US009407442B2

a2z United States Patent (10) Patent No.: US 9,407,442 B2
Krten 45) Date of Patent: Aug. 2, 2016
(54) TAMPER-EVIDENT NETWORK MESSAGING  (56) References Cited

(71)
(72)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

METHOD AND SYSTEM, AND DEVICE
CONFIGURED THEREFOR

Applicant: Robert Krten, Ottawa (CA)
Inventor: Robert Krten, Ottawa (CA)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 14/821,758

Filed: Aug. 9, 2015
Prior Publication Data
US 2016/0099809 A1l Apr. 7,2016

Related U.S. Application Data

Provisional application No. 62/059,893, filed on Oct.
4,2014.

Int. Cl1.

HO4L 9/32 (2006.01)

U.S. CL

CPC ........... HO04L 9/3236 (2013.01); HO4L 9/3242

(2013.01)
Field of Classification Search
None
See application file for complete search history.

U.S. PATENT DOCUMENTS

2002/0138756 Al* 9/2002 Makofka .............. HO4N 7/1675
726/25
2004/0064695 Al* 4/2004 Lotspiech ............. GO6F 21/64
713/168
2005/0259844 Al* 11/2005 Kot ...cocovieinnn GO6T 1/0028
382/100
2007/0067497 Al*  3/2007 Craft ..o HO4L 69/32
709/250

* cited by examiner
Primary Examiner — Brandon Hoffman

(57) ABSTRACT

Described are various embodiments of a tamper-evident net-
work messaging method and system, and device configured
therefor. In some embodiments, tamper-evident messaging is
enabled between network-interfacing devices. In general,
these devices will each comprise a hardware hasher or the
like, operatively configured to compute and supply a hash
value to their respective network interface via an independent
path distinct from the device’s one or more software-acces-
sible paths, where it may be combined with outgoing mes-
sages to provide indication of possible code tampering, or
again evaluated against incoming hash values associated with
incoming messages to verify an authenticity thereof. In some
embodiments, such hash values may further or alternatively
be used for the encryption/decryption of intercommunicated
messages to provide a similar effect.

20 Claims, 6 Drawing Sheets

30y
ADDRESS BUS 50
HASHING 'y >
HARDWARE  |e———DATABUS60\ 1  FIRMWARE
\20
\ J

10\

CPU

100 )
\.11

HASH
VALUE

\

INTER

NETWORK
FACE

.40

\ 300

MESSAGE

\110



US 9,407,442 B2

Sheet 1 of 6

Aug. 2, 2016

U.S. Patent

T 34N9I
oty
39VSSAN
00% ./v b JOVAHIINI |,
\ MHOMLIAN €T,
IT dNIVA
HSVH
T \oor
NdD
\ 0T
ON/, ﬁ
— »  JUVMaYVH
JHVYMINEIH \. 09 SN vivd Y ONIHSYH
\ 05 sna ss3yaav X
o€




US 9,407,442 B2

Sheet 2 of 6

Aug. 2, 2016

U.S. Patent

OTT

2 34N9I4
INJLNOD ANTVA y¥3avaH
3OVSSaN HSVH JOVSSIN
\0€T 001 \oz1




US 9,407,442 B2

Sheet 3 of 6

Aug. 2, 2016

U.S. Patent

c0€

g

ONH

JAVMINAIS

oy
I9VSSIN
o7y, SOV ANEIN - ANTVA
MHOMLIN HSVH
i F oot
Ndd
\ 0T
— . H o  JUVYMANVH
“~N oo snavivd 1 ONIHSYL
\ 05 SNg ss3¥aav A
Hm./
€ 3dNoid HOLD3aA
NOILVZITVILINI




U.S. Patent Aug. 2, 2016 Sheet 4 of 6 US 9,407,442 B2

320

o
ofls «
Ll Z |/ o
O |—— O
S| o <O 2
sl 2 = )
D_O LL
20




US 9,407,442 B2

Sheet 5 of 6

Aug. 2, 2016

U.S. Patent

G d4dN9I4
0TE€ XJOMLAN
c0€ c0€
AR T'TE
¢d0O103dA TdO1OdA
NOILVZITVILINI NOILVZITVILINI
/ AR \ TT€




US 9,407,442 B2

Sheet 6 of 6

Aug. 2,2016

U.S. Patent

9 3NOI4
L1AN 22
d9OVSSAN aANION3
Q3LdA¥ONT  [F|LdA¥O3Q/LdAdONT [+  FFLEIANOD
{ T Yooz
b JOVHHTLNI 3NTVA
| Myomian HSVH
' Voot
£0g ./v
Ndo
\ ot
ONH H
“\ »  IAVMaNVH
FAVMINA IS oosnavivd | N
\.05 Sng ss3daav <
._Hm/
¥OL1O3A
NOILVZITVILINI




US 9,407,442 B2

1
TAMPER-EVIDENT NETWORK MESSAGING
METHOD AND SYSTEM, AND DEVICE
CONFIGURED THEREFOR

FIELD OF THE DISCLOSURE

The present disclosure relates to network communications
and devices, and in particular, to a tamper-evident network
messaging method and system, and device configured there-
for.

BACKGROUND

With the emergence of network-connected devices, and
particularly with the growing importance of ensuring uncom-
promised operation of such devices, a growing need for estab-
lishing trust is required. In a network of devices, it is difficult
to establish that a message originated from a device that has
not been tampered with or compromised. In such a network,
an attacker may wish to tamper with a device in order to send
out data advantageous to the attacker. For example, in a net-
work-based home security system, one node may verify the
identity of the person attempting to open the door, and another
node may open the door, relying on the data from the verify-
ing node. In this case, while the attacker may not be able to
provide the proper credentials to identify themselves as a
person authorized to enter the home, they may instead be able
to compromise the verification node. The compromised veri-
fication node then transmits a message to the node respon-
sible for opening the door, and, because the verification node
is compromised, it may falsely transmit a message indicating
that the attacker is authorized to enter the home.

In order for the receiving node (in this example, the node
responsible for opening the door) to verify that the sending
node (the verification node in this example) has not been
tampered, the receiving node would need some way of
inspecting the software present on the sending node. Because
the receiving node has no way to actually inspect the sending
node to make sure that the software on the sending node has
not been tampered, the receiving node can not reliably tell the
difference between messages sent from a compromised send-
ing node as compared to those sent from an uncompromised
sending node.

One difficulty stems from the general fact that there is
software involved on the sending node, and that this software
can lie if compromised about various authenticating factors.
For instance, since all of the data sent from the sending node
generally passes through software, this means that data used
to indicate the non-tampered status of the sending node can be
faked by tampered software. For example, in one such
scheme, the sending node and the receiving node mutually
authenticate each other, and establish a token, be it a simple
number or an encryption key, to be used for future commu-
nications. Generally, receipt of the token indicates that the
sending software has not been tampered. This may be
achieved by existing hardware-based solutions, such as ones
based on Trusted Execution Environment modules as are
known in the art. However, once the token is known, an
attacker can then modify the software on the sending node,
causing it to send out the same token, even thought the soft-
ware is tampered. This negates the effectiveness of any
scheme based on tokens that pass through software.

The net effect of this is that, to the receiving node, the
sending node is a black box whose veracity cannot be estab-
lished by the receiving node.

In general, various existing methods purport to establish
the veracity of the sending node, by such means as establish-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing a hardware root of trust, such as secure bootloaders.
However, these solutions have significant drawbacks as they
generally invoke the use of software to transmit their data.
Accordingly, if the software is tampered, it can fake messages
that are otherwise indistinguishable from messages originat-
ing from untampered software.

This background information is provided to reveal infor-
mation believed by the applicant to be of possible relevance.
No admission is necessarily intended, nor should be con-
strued, that any of the preceding information constitutes prior
art.

SUMMARY

The following presents a simplified summary of the gen-
eral inventive concept(s) described herein to provide a basic
understanding of some aspects of the invention. This sum-
mary is not an extensive overview of the invention. It is not
intended to restrict key or critical elements of the invention or
to delineate the scope of the invention beyond that which is
explicitly orimplicitly described by the following description
and claims.

A need exists for a tamper-evident network messaging
method and system, and device configured therefor, that over-
come some of the drawbacks of known techniques, or at least,
provides a useful alternative thereto. Some aspects of this
disclosure provide examples of such methods, systems and
devices.

In accordance with one aspect, there is provided a network
interfacing device communicating data messages over a net-
work, the device comprising: a network interface to commu-
nicate the data messages; a memory having software code
stored thereon; a processor to operatively interface with said
memory in executing said software code to at least partially
operate the device; and a hardware hasher to operatively
interface with said code storage device to compute a hash
value over at least a designated area thereof and supply said
hash value to said network interface via an independent path
distinct from any software accessible path so as to be com-
bined with at least some of the data messages communicated
by said network interface.

In accordance with one embodiment, said hash value, once
combined with a given data message provides an indication of
software authenticity to a recipient of said given data mes-
sage.

In accordance with one embodiment, said network inter-
face consists of an all-hardware network interface.

In accordance with one embodiment, said independent
path consists of one or more independent hardware hasher
data links.

In accordance with one embodiment, said processor
executes said software code to generate message data to be
supplied to said network interface via a designated software
accessible path so to be communicated thereby as part of said
combined data messages.

In accordance with one embodiment, the device is config-
ured to combine said hash value with an automatic reply
message to be communicated via said network interface
responsive to a designated incoming message.

In accordance with one embodiment, the device is respon-
sive only to incoming messages comprising an incoming hash
value identical to said computed hash value.

In accordance with one embodiment, said network inter-
face encrypts outgoing messages and decrypts incoming mes-
sages using said hash value as an encryption/decryption key.



US 9,407,442 B2

3

In accordance with one embodiment, said network inter-
face further outputs a decryption success indicator such that
unsuccessfully decrypted incoming messages are blocked at
said network interface.

In accordance with one embodiment, additional data is
supplied to said hardware hasher in computing said hash
value. In accordance with one such embodiment, the addi-
tional data is at least one of supplied by and accessible to
executed code.

In accordance with one embodiment, said hardware hasher
periodically computes said hash value during operation so to
signal possible code tampering upon identification of a
change in said periodically computed hash value.

In accordance with another aspect, there is provided a
method for communicating tamper-evident messages from an
originating device over a network, the method comprising:
locally executing software code stored on the originating
device to at least partially operate the originating device;
locally computing a computed hash value over at least a
portion of said code via a hardware hasher; supplying said
computed hash value to a network interface of the originating
device via an independent path distinct from any software
accessible path; and combining said computed hash value at
said network interface with a data message to be communi-
cated thereby over the network.

In accordance with one embodiment, an inauthenticity of
said hash value as combined with said data message provides
evidence of tampering.

In accordance with one embodiment, said locally execut-
ing at least in part supplies message data to said network
interface via a designated software accessible path so to be
communicated thereby once combined with said hash value
in said data message.

In accordance with one embodiment, said data message
comprises an automatic reply message, and wherein the
method further comprises communicating said automatic
reply message via said network interface responsive to a
designated incoming message.

In accordance with one embodiment, the method further
comprises before said communicating, comparing an incom-
ing hash value associated with said designated incoming mes-
sage with said computed hash value, and wherein said com-
municating comprises communicating said automatic reply
message only upon said incoming hash value corresponding
to said computed hash value.

In accordance with one embodiment, the method further
comprises encrypting said data message using said computed
hash value as an encryption key.

In accordance with one embodiment, the method further
comprises decrypting incoming messages using said com-
puted hash value as a decryption key, and blocking unsuc-
cessfully decrypted incoming messages at said network inter-
face.

In accordance with one embodiment, said computing com-
prises computing said computed hash value as a function of
additional data available to said hardware hasher. In accor-
dance with one such embodiment, said additional data is at
least one of supplied by and accessible to said executed soft-
ware code. In accordance with one such embodiment, said
additional data comprises a unique value corresponding to a
data message destination.

In accordance with one embodiment, said computing com-
prises periodically computing said hash value such that a
detected change in said periodically computed hash value
provides evidence of tampering.

In accordance with another aspect, there is provided a
method for detecting originating device tampering at a receiv-

25

40

45

50

65

4

ing device upon receipt of an incoming data message from the
originating device over a network, the method comprising:
locally executing software code stored on the receiving
device over one or more software accessible paths to at least
partially operate the receiving device, wherein at least part of
said software code corresponds with identical code stored on
said originating device; locally computing a computed hash
value over said identical code via a hardware hasher; supply-
ing said computed hash value to a network interface of the
receiving device via an independent path distinct from any
said software accessible paths; receiving the incoming data
message at said network interface; evaluating an authenticity
of an incoming hash value associated with the incoming
message, wherein said incoming hash value is predetermined
to have been computed at said originating device over said
identical code stored thereon and combined with said incom-
ing message; and processing the incoming message accord-
ing to said evaluated authenticity.

In accordance with one embodiment, said evaluating com-
prises comparing said incoming hash value with said com-
puted hash value and confirming said authenticity upon said
incoming hash value corresponding to said computed hash
value.

In accordance with one embodiment, said evaluating com-
prises decrypting the incoming message using the computed
hash value as a decryption key, and confirming said authen-
ticity upon successful decryption.

In accordance with one embodiment, said processing com-
prises blocking further processing of the incoming message
upon identifying an inauthenticity thereof. In accordance
with one such embodiment, said blocking comprises block-
ing the incoming message at said network interface from
further processing.

In accordance with one embodiment, said processing com-
prises communicating a reply message to the incoming mes-
sage in which said computed hash value is combined with
said reply message as authentication thereof.

In accordance with one embodiment, the method further
comprises supplying receiving device-specific data to said
hardware hasher so to compute said hash value as a function
thereof, wherein said incoming hash value is predetermined
to have been computed at said originating device as a function
of said receiving device-specific data.

In accordance with another aspect, there is provided a
tamper-evident network communication system, the system
comprising: two or more network interfacing devices, each
one of which comprising a network interface; a memory
having software code stored thereon, wherein at least a des-
ignated portion of said software code is set to be identical for
each of said devices; a processor to operatively interface with
said memory in executing said software code over one or
more software accessible paths; and a hardware hasher to
operatively interface with said code storage device to com-
pute a local hash value over said designated portion and
supply said local hash value to said network interface via an
independent path distinct from any said software accessible
paths; wherein said network interface at an originating one of
said devices combines said local hash value supplied thereto
with a data message to be communicated thereby; and
wherein said network interface at a receiving device evaluates
said combined hash value combined with said data message
against said local hash value supplied thereto as an indicator
of software code tampering.

In accordance with one embodiment, said processor
executes said software code at said originating device to
generate message data to be combined in said data message at
said network interface.



US 9,407,442 B2

5

In accordance with one embodiment, said network inter-
face encrypts outgoing messages and decrypts incoming mes-
sages using said hash value as an encryption/decryption key,
and wherein unsuccessful decryption of said data message at
said receiving device outputs said indicator of code tamper-
ing. In accordance with one such embodiment, output of said
indicator blocks further processing of said data message at
said network interface of said receiving device.

In accordance with one embodiment, additional data is
supplied to said hardware hasher in computing said local hash
value. In accordance with one such embodiment, said addi-
tional data is a unique value respective to each of said devices,
and wherein said hardware hasher at said originating device
computes said local hash value as a function of said unique
value respective to said receiving device.

In accordance with one embodiment, said hardware hasher
periodically computes said hash value during operation so to
signal possible code tampering upon identification of a
change in said periodically computed hash value.

Other aspects, features and/or advantages will become
more apparent upon reading of the following non-restrictive
description of specific embodiments thereof, given by way of
example only with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE FIGURES

Several embodiments of the present disclosure will be pro-
vided, by way of examples only, with reference to the
appended drawings, wherein:

FIG. 1 is a schematic diagram of a network-interfacing
device configured to send and receive data messages over a
network, in accordance with one embodiment;

FIG. 2 is a schematic diagram of a data message format for
messages sent and received using the device of FIG. 1, in
accordance with one embodiment;

FIG. 3 is a schematic diagram of a network-interfacing
device, in accordance with another embodiment;

FIG. 4 is a schematic diagram of a network node update-
able via an updating computer, in accordance with another
embodiment;

FIG. 5 is a schematic diagram of a network of intercom-
municating network nodes executing at least some identical
software and having associated therewith respective hasher
initialization vectors, in accordance with another embodi-
ment; and

FIG. 6 is a schematic diagram of a network-interfacing
device having an encryption/decryption engine, in accor-
dance with another embodiment.

DETAILED DESCRIPTION

Generally, the following description is directed toward the
provision of tamper-evident messaging between network-
interfacing devices. In general, these devices will each com-
prise a hardware hasher or the like, operatively configured to
compute and supply a hash value to their respective network
interface via a dedicated and independent path distinct from
the device’s standard software-accessible paths, where it may
be combined with outgoing messages to provide indication of
possible code tampering, or again evaluated against incoming
hash values associated with incoming messages to verify an
authenticity thereof. In some embodiments, such hash values
may further or alternatively be used for the encryption/de-
cryption of intercommunicated messages to provide a similar
effect.

With reference to FIG. 1, and in accordance with one
embodiment, a network-interfacing device or system 300

10

15

20

25

30

35

40

45

50

55

60

65

6

generally comprises a Central Processing Unit (CPU) or other
hardware processor 10 that executes instructions stored in a
firmware module 20 or the like to at least in part operate the
device 300. The device may define one or more software-
accessible paths, such as path 11 linking the CPU 10 to a
network interface 40 in processing outgoing/incoming net-
work messages, but also in linking the CPU and the like to
other device sub-components, devices, data stores and the
like in operating the device in accordance with the native
software code. The CPU 10 accesses the instructions to
execute by setting the address of the instruction to fetch on an
address bus 50 and issuing a hardware-read request. The
firmware module 20 responds with the content of the firm-
ware at the requested location and presents the data on the
data bus 60. The CPU 10 reads the data from the data bus 60
and executes the instruction. In this manner, the CPU 10 is
able to execute all instructions in its program. In a similar
manner, although not directly related to the subject matter of
the present disclosure, the CPU 10 is also able to read other
non-instruction data (e.g. input or acquire data, parameters,
etc.) from the firmware 20 or other modules (not shown) as
may be present in the device 300. Writing data, also not
directly related to the subject matter of the present disclosure,
is accomplished in a similar manner.

In this embodiment, both before the CPU 10 starts normal
operation, and in conjunction with the normal operation of the
CPU 10, a hardware hasher 30 computes a hash value 100 of
all or a selected portion of the firmware 20, by reading the data
from the firmware 20 in the same manner that the CPU 10
does during normal operation; that is, the hasher 30 emits
sequential addresses on the address bus 50 and reads the
resulting content from the data bus 60. When performing this
operation in conjunction with the normal operation of the
CPU 10, the hardware hasher 30 can use bus-sharing tech-
niques as are commonly known in the art (e.g., by stealing bus
cycles from the CPU 30). The address range used by the
hasher 30 is relevant to the present disclosure only insofar as
it must be of sufficient range to provide assurance of the
software’s untampered state (that is to say, selecting only
address ranges that are relevant to the operation of the soft-
ware). The hasher 30 computes a hash of the resulting data in
a manner known to those skilled in the art (for example, the
hasher 30 may be an embodiment of a cryptographically
secure hasher, such as that described in U.S. Pat. No. 7,489,
779 entitled “Hardware implementation of the secure hash
standard” and issued to Scheuermann). It is understood that
while the specific hashing algorithm selected is not relevant to
the present disclosure, it will be appreciated by a person
having ordinary skill in the art that the ability for the attacker
to tamper the software will be a direct function of the security
of the hash algorithm (that is to say, a “weak” hash, such as a
CRC32, allows the attacker to construct tampered software
that, while compromised, will yield the same hash value as
untampered software (a “collision”), whereas a “strong”
hash, such as SHA-256, will provide a unique value for the
untampered software for which it will be infeasible for the
attacker to create a collision). Once the hash value has been
computed over the specified address range, the hash value is
stored in a hash value register 100 for later use. The hash value
may be computed throughout the operation of the system 300,
in which case, upon the completion of each computation
cycle, the newly computed hash value will be stored in the
hash value register 100.

Once the hash value 100 has been computed, the software
in the system 300 may proceed to transmit messages 110 as
part of its normal operation. The hardware network interface
40, which may consist of an all-hardware network interface



US 9,407,442 B2

7

for greater security or again of a packaged network interface
having a microcontroller executing embedded code, is sup-
plied or otherwise accesses the hash value 100 via a dedicated
path 13 (e.g. an independent path distinct from native soft-
ware-accessible paths 11, in one configuration, defining inde-
pendent hardware hasher data link(s) to the network inter-
face), and combines it with the message content (e.g. received
from the firmware 20 via path 11) to produce the network-
bound output message 110.

With reference now to FIG. 2, and in accordance with one
embodiment, the message 110 illustratively consists of three
parts: a message header 120, the hash value 100, and the
message content 130. The ordering of the message parts is for
illustration only, as will be appreciated by the skilled artisan,
and can be altered without departing from the general scope
and nature of the present disclosure. Likewise, the message
header may contain different information/data as appropriate
or required in accordance with the messaging protocol at
hand. It may, for example, contain a destination address and a
length field, as well as other fields as readily known in the art.
In this embodiment, however, the message 110 contains the
hash value 100, which, as noted above, is enforced by the
hardware hasher 30 and is thus outside of the control of the
system’s software (e.g. firmware module 20 of FIG. 1). As
will be appreciated by the skilled artisan, the actual message
content 130 may vary depending on the application at hand,
and is therefore, of limited consequence to the inventive
implementation of the embodiments disclosed herein. Fol-
lowing from example provided above, the message content
130 may contain an indication of the authentication param-
eters for the home security door lock described above, though
the person of ordinary skill in the art will readily appreciate
the versatility of the embodiments described herein for imple-
mentation in myriad other applications.

With reference now to FIG. 3, and in accordance with
another embodiment, a similar network-interfacing device
302 as described above with reference to FIG. 1 can further
benefit from the supply of additional data, such as initializa-
tion vector 31, into the hardware hasher 30 to seed the hashing
hardware 30 with a unique number (such as a serial or node
number). Whether the initialization vector 31 is considered
before the firmware 20 is hashed or at some other point is of
limited consequence to the implementation of the embodi-
ments considered herein, as will be appreciated by the skilled
artisan.

Considering two instances of the system 302, each with a
different initialization vector 31 but with identical firmware
20, when the hash value 100 is computed over the respective
instances of firmware 20, because the hashing hardware 30 is
seeded with a unique number, a respective hash value 100 will
be computed for each instance of the system 302 even though
the firmware 20 is identical. In this manner, if the software has
no access to the initialization vector 31, then even if special-
ized attacker-friendly hardware is created that can use the
same message protocol as that considered herein, and even if
that hardware can be controlled by software, the attacker
would still need to retrieve the initialization vectors 31 for
each device they wished to spoof. That is, for each device
from which the attacker wanted to generate valid-looking
messages, they would need to obtain the initialization vector
31, which would only be obtainable via hardware reverse
engineering. Ultimately, the use of distinct initialization vec-
tors could greatly diminish the scalability of an attacker’s
attempts over a wide range of otherwise identical devices/
systems. As will be described below, with the use of distinct
initialization vectors, intercommunicating devices may
require further configuration to properly adapt to a sender’s

20

30

40

45

55

8

and/or intended receiver’s respective initialization vector so
to provide effective hash value authentication given the dif-
ferent native hash values respective to each intercommuni-
cating device.

Following from the example described above with refer-
ence to FIG. 1 illustrating the transmission of tamper-evident
messages from a network interfacing device 300, a same
device 300 may also be configured to receive and process
such messages as follows. Again with reference to FIG. 1,
when an incoming message 110 is received on the network
interface 40, the hardware forming the network interface 40
can compare an incoming hash value associated with this
incoming message 110 against the local receiving node hash
value 100 computed by the hashing hardware 30. If the two
hash values match, then the incoming message 110 can be
allowed through the network interface 40 and up to the CPU
10 where it will be handled by the software. In the case of the
two hash values not matching, then the incoming message
110 can be blocked by the network interface 40, and therefore
not be passed to the CPU 10. In this manner, a homogeneous
network of nodes 300 would be able to communicate with
each other regardless of their software load, provided that
they all had the same software load.

Authentication can also be achieved by using the hash
value 100 as a symmetrical encryption/decryption key. For
example, outgoing messages 110 can be encrypted using the
hash value 100 of a sending node, and decrypted indirectly
using software on the receiving node, directly by the receiv-
ing node’s network interface 40 using the receiving node’s
hash value 100, or different combinations of software and/or
hardware as will be apparent to a person having ordinary skill
in the art.

In a further embodiment of the disclosure, automatic
decryption can be validated by self-checking data in the mes-
sage 110 itself. This can be implemented by encoding known
data into the message’s content 130 or other message parts.
When the message 110 arrives and is decrypted by the receiv-
ing node’s network interface 40, the known data can be veri-
fied for correct content. If the known data has been correctly
decrypted, then the message 110 can be passed through the
network interface 40 to the CPU 10 for additional processing.
Messages 110 that are not correctly decrypted can be ignored
by the network interface 40, or they can generate an error
message, etc.

Following from the example of FIG. 3, in the case of a
virtual private network implemented using nodes 302 with
the same software load but different initialization vectors 31,
the hashing hardware 30 can be programmed by the software
to include unique initialization vectors 31 corresponding to
the same initialization vectors 31 as are used by the other
nodes. That is to say, considering a network with two nodes,
as shown for example in FIG. 5, a first node 311 and second
node 312 may be identical other than for their respective
initialization vectors. For instance, the first node 311 may
have a first initialization vector 31.1 associated therewith that
is different from a second initialization vector 31.2 associated
with the second node 312. Accordingly, each node will
natively generate a different hash value 100 for incorporation
into their respective outgoing messages. However, in order
for the software on the first node 311 to effectively send a
message to the second node 312 and have the second node 312
correctly receive this message and recognize it as being
uncompromised, the first node 311 may be configured to
supply an appropriate initialization vector to its native hasher,
namely, the initialization vector 31.2 of the intended recipient
of'the outgoing message, in this case the second node 312. In
this manner, the hashing hardware 30 is able to compute the



US 9,407,442 B2

9

correct hash value 100 so that the second node 312 can auto-
matically receive the message 110 and recognize it as being
uncompromised. A person having ordinary skill in the art will
realize that a full re-computation of the hash value 100 each
and every time a message 110 is sent is not necessary, as these
values can be cached according to common practise.

With reference again to FIG. 1, and in accordance with one
embodiment, device authentication can be automated by hav-
ing the device’s network interface 40 automatically respond
to special hash query messages. For example, the network
interface 40 may look for messages 110 having a specific
message header 120 indicative of a hash query message.
When such a message arrives, the network interface 40 would
reply automatically with a message 110, which would auto-
matically contain the hash value 100, without necessarily
involving the CPU 10. This has the advantage of allowing
passive monitoring of the tampered state of the firmware 20.

With reference to FIG. 4, in another embodiment of the
present disclosure, a specialized updating computer 310 can
be connected to a given node, such as the network interfacing
device 300 of FIG. 1, in order to program a network system
320 for operation in a tightly-coupled manner. This may be
accomplished by the updating computer 310 by computing, a
priori, the value of the hash 100 that will be computed by the
node 300 after the updating computer 310 has sent the soft-
ware load to the node 300. In such a system 320, the commu-
nications between the node 300 and the updating computer
310 would be secured by the communications protocol
described above. For greater security, the initialization vec-
tor-enhanced hashed communication protocol described with
reference to the device 302 of FIG. 3 can be adopted instead.

It should be apparent that a network such as network 320
can be constructed with more than one node. For instance, the
updating computer 310 may be specialized in that it has
hardware capable of using a software-generated hash value,
for example.

With reference to FIG. 6, and in accordance with another
embodiment of the present disclosure, a network-interfacing
device 303 may further include an encrypt/decrypt engine 22
used to produce encrypted messages 111, when used to trans-
mit messages over the network, and/or decrypt incoming
messages 111 when used to receive incoming network mes-
sages. In this embodiment, the computed hash value 100 can
be used as a symmetrical encryption/decryption key to sup-
port encrypted network traffic.

An optional converter 200 can also be put in place to
convert the hash value 100 into a format usable as a symmet-
ric encryption/decryption key. For example, because the sizes
of respective hashes may vary (e.g. CRC32 produces a 32-bit
value, SHA-1 produces a 160-bit value, and SHA256 pro-
duces a 256-bit value, etc.), and because the respective sizes
of symmetric encrypt/decrypt keys may also vary (e.g. DES
requires a 56-bit key, 3DES requires a 168-bit key, and AES-
256 requires a 256-bit key, etc.), a converter 200 may be
interposed to convert the computed hash value 100 into a key
suitable for the encrypt/decrypt engine 22. In this context,
every time a hash value is computed and stored in the hash
value register, a prescribed conversion can also take place by
the converter 200 to output an appropriately sized key for use
by the encrypt/decrypt engine 22.

In cases where the size of the hash value is the same as (or
bigger than) the size of the implemented key, the hash (or a
subset of it) can be used directly as the key. In case the size of
the hash is smaller than the size of the key, however, certain
key bits can be generated (for example, left as zero, left as one,
or duplicated from other bits from the hash). Clearly, where
the hash has the same number (or more) bits than the intended

30

40

45

60

10

key, the converter 200 can be significantly simplified or elimi-
nated altogether. Where the hash has fewer bits than the key,
the generated bits will be generated consistently (so that they
don’t change between encryption and decryption cycles) and
predictably (in case ifs a requirement to be able to access the
data by another system that needs to be able to generate keys),
bearing in mind that the strength of the encryption may be
compromised by the number of thusly-generated bits. As an
example, for greater clarity, if the hash value is a 160-bit
SHA-1 value, and the encrypt/decrypt engine 22 uses DES
that requires a 56-bit key size, the converter 200 would be
responsible for converting the 160-bit value to a 56-bit value.
In one example, it could simply discard 104 bits (160-56).
Similarly, if 3DES was used instead, implying a 168-bit key
size, the converter 200 could supply eight additional bits of
key in order to convert the 160-bit SHA-1 value to a 168-bit
value. If, on the other hand, SHA-256 was used in the hasher
30, and AES-256 was used in the encrypt/decrypt 22 block,
then converter 200 would not be required as the key size
would match the hash size, and the hash value 100 could be
used directly as the key. As the specific encryption type is not
alimiting factor of instantly disclosed embodiments, it should
be apparent that the encrypt/decrypt engine may be enhanced
in various ways, such as, but not limited to, by selection of
encryption/decryption modes (e.g. block, chain), and such
other matters.

While the present disclosure describes various exemplary
embodiments, the disclosure is not so limited. To the contrary,
the disclosure is intended to cover various modifications and
equivalent arrangements included within the general scope of
the present disclosure.

What is claimed is:

1. A network interfacing device communicating data mes-
sages over a network, the device comprising:

a network interface to communicate the data messages;

a memory having software code stored thereon;

a processor to operatively interface with said memory in
executing said software code to at least partially operate
the device; and

a hardware hasher to operatively interface with said
memory to compute a hash value over at least a desig-
nated area thereof and supply said hash value to said
network interface via an independent path distinct from
any software accessible path so as to be combined with
at least some of the data messages communicated by
said network interface.

2. The device of claim 1, wherein said hash value, once
combined with a given data message provides an indication of
software authenticity to a recipient of said given data mes-
sage.

3. The device claim 1, wherein said processor executes said
software code to generate message data to be supplied to said
network interface via a designated software accessible path so
to be communicated thereby as part of said combined data
messages.

4. The device of claim 1, wherein the device is configured
to combine said hash value with an automatic reply message
to be communicated via said network interface responsive to
a designated incoming messages.

5. The device of claim 1, wherein the device is responsive
only to incoming messages comprising an incoming hash
value identical to said computed hash value.

6. The device of claim 1, wherein said network interface
encrypts outgoing messages and decrypts incoming mes-
sages using said hash value as an encryption/decryption key.



US 9,407,442 B2

11

7. The device of claim 6, wherein said network interface
further outputs a decryption success indicator such that
unsuccessfully decrypted incoming messages are blocked at
said network interface.

8. The device of claim 1, wherein additional data is sup-
plied to said hardware hasher in computing said hash value.

9. The device of claim 8, wherein said additional data is at
least one of supplied by and accessible to executed code.

10. The device of claim 1, wherein said hardware hasher
periodically computes said hash value during operation so as
to signal possible code tampering upon identification of a
change in said periodically computed hash value.

11. A method for communicating tamper-evident messages
over a network, the method comprising:

locally executing software code stored on an originating

device to at least partially operate the originating device;

locally computing a computed hash value over at least a

portion of said code via a hardware hasher;

supplying said computed hash value to a network interface

of'the originating device via an independent path distinct
from any software accessible path; and

combining said computed hash value at said network inter-

face with a data message to be communicated thereby
over the network.

12. The method of claim 11, wherein an inauthenticity of
said hash value as combined with said data message provides
evidence of tampering.

13. The method of claim 11, wherein said locally executing
atleast in part supplies message data to said network interface
via a designated software accessible path so to be communi-
cated thereby once combined with said hash value in said data
message.

10

15

20

25

30

12

14. The method of claim 11, wherein said data message
comprises an automatic reply message, and wherein the
method further comprises communicating said automatic
reply message via said network interface responsive to a
designated incoming message.

15. The method of claim 14, further comprising before said
communicating, comparing an incoming hash value associ-
ated with said designated incoming message with said com-
puted hash value, and wherein said communicating com-
prises communicating said automatic reply message only
upon said incoming hash value corresponding to said com-
puted hash value.

16. The method of claim 11, further comprising encrypting
said data message using said computed hash value as an
encryption key.

17. The method of claim 11, further comprising decrypting
incoming messages using said computed hash value as a
decryption key, and blocking unsuccessfully decrypted
incoming messages at said network interface.

18. The method of claim 11, wherein said computing com-
prises computing said computed hash value as a function of
additional data available to said hardware hasher.

19. The method of claim 18, wherein said additional data is
at least one of supplied by and accessible to said executed
software code.

20. The method of claim 11, wherein said computing com-
prises periodically computing said hash value such that a
detected change in said periodically computed hash value
provides evidence of tampering.

#* #* #* #* #*



